Neuronal differentiation from postmitotic precursors in the ciliary ganglion.
نویسندگان
چکیده
In the chick ciliary ganglion, neuronal number is kept constant between St. 29 and St. 34 (E6-E8) despite a large amount of cell death. Here, we characterize the source of neurogenic cells in the ganglion as undifferentiated neural crest-derived cells. At St. 29, neurons and nonneuronal cells in the ciliary ganglion expressed the neural crest markers HNK-1 and p75(NTR). Over 50% of the cells were neurons at St. 29; of the nonneuronal cells, a small population expressed glial markers, whereas the majority was undifferentiated. When placed in culture, nonneuronal cells acquired immunoreactivity for HuD, suggesting that they had commenced neuronal differentiation. The newly differentiated neurons arose from precursors that did not incorporate bromodeoxyuridine. To test whether these precursors could undergo neural differentiation in vivo, purified nonneuronal cells from St. 29 quail ganglia were transplanted into chick embryos at St. 9-14. Subsequently, quail cells expressing neuronal markers were found in the chick ciliary ganglion. The existence of this precursor pool was transient because nonneuronal cells isolated from St. 38 ganglia failed to form neurons. Since all ciliary ganglion neurons are born prior to St. 29, these results demonstrate that there are postmitotic neural crest-derived precursors in the developing ciliary ganglion that can differentiate into neurons in the appropriate environment.
منابع مشابه
Cell death and neuronal replacement during formation of the avian ciliary ganglion.
Programmed cell death is a prominent feature of embryonic development and is essential in matching the number of neurons to the target tissues that are innervated. Although a decrease in neuronal number which coincides with peripheral synaptogenesis has been well documented in the avian ciliary ganglion, it has not been clear whether cell death also occurs earlier. We observed TUNEL-positive ne...
متن کاملAntibodies against Pax6 immunostain amacrine and ganglion cells and neuronal progenitors, but not rod precursors, in the normal and regenerating retina of the goldfish.
Pax6 is a developmental regulatory gene that plays a key role in the development of the embryonic brain, eye, and retina. This gene is also expressed in discrete groups of neurons within the adult brain. In this study, antibodies raised against a fusion protein from a zebra fish pax6 cDNA were used to investigate the expression of the pax6 gene in the mature, growing, and regenerating retina of...
متن کاملSignaling via the transcriptionally regulated activin receptor 2B is a novel mediator of neuronal cell death during chicken ciliary ganglion development
The TGF-β ligand superfamily members activin A and BMP control important aspects of embryonic neuronal development and differentiation. Both are known to bind to activin receptor subtypes IIA (ActRIIA) and IIB, while in the avian ciliary ganglion (CG), so far only ActRIIA-expression has been described. We show that the expression of ACVR2B, coding for the ActRIIB, is tightly regulated during CG...
متن کاملInsulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor.
Insulin-like growth factor-I (IGF-I) has been reported previously to promote the proliferation, survival, and maturation of sympathetic neuroblasts, the genesis of retinal neurons, and the survival of CNS projection and motor neurons. Here we asked whether IGF-I could promote the in vitro differentiation of postmitotic mammalian CNS neuronal precursors derived from multipotent epidermal growth ...
متن کاملPαx6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1
During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable leve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 252 2 شماره
صفحات -
تاریخ انتشار 2002